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Introduction: D-wave as an efficient sampler

Theoretical and experimental evidence that D-wave can approximately
sample from a Boltzmann distribution at some effective temperature

Ronnow et al., Science (2014)
Amin, Phys. Rev. A (2015)

Perdomo-Ortiz et al., Sci. Rep. (2016)
Benedetti et al., Phys. Rev. A (2016)

Ending up in excited states due to noise, "freeze-out", etc.



Introduction: D-wave as an efficient sampler

Disadvantage for optimization turned into advantage for numerous
applications:

Ending up in excited states due to noise, "freeze-out", etc.

! Restricted Boltzmann Machines (blocks for Deep Learning)
Denil & Freitas, NIPS (2011); Dumoulin et al., AAAI Artificial Intelligence (2015);
Benedetti et al., Phys. Rev. A (2016); Amin et al., “Quantum Boltzmann Machine” (2016)

! Producting samples in hard glassy models
Katzgraber et al., Phys. Rev. X (2014 & 2015); Martin-Mayor & Hen, Sci. Rep. (2015);
Venturelli et al., Phys. Rev. X (2015); Zhu et al., Phys. Rev. A (2016)

! Accurate calibration of the D-wave machine
King & McGeoch (2014) “Algorithm engineering for a quantum annealing platform”;
Perdomo-Ortiz et al., Sci. Rep. (2016); Raymond et al., “Global warming: temperature
estimation in annealers” (2016); Also example in this debrief!



Relation between input and effective Hamiltonians in D-wave

Input Hamiltonian

H =
∑
〈i ,j〉

Jijσiσj +
∑
i∈V

Hiσi

Effective Hamiltonian in D-wave

Heff =
∑
〈i ,j〉

J ′ijσiσj +
∑
i∈V

H ′iσi

Let us write J ′ij = β(Jij + ∆Jij), H ′i = β(Hi + ∆Hi ), where

T = 1/β : effective temperature
∆Jij , ∆Hi : possible biases

Correspondence H ↔ Heff by solving the reconstruction problem of
learning β, ∆Jij , ∆Hi from samples produced by D-wave with Heff
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Reconstruction problem in D-wave

Given M independent samples (configurations), reconstruct Heff

𝑘 =1 𝑘 =2 … 𝑘 =M

𝜎1 +1 −1 … +1

𝜎2 −1 −1 … −1

⋮ ⋮ ⋮ … ⋮

𝜎N +1 +1 … −1

Task known as Inverse Ising Problem. The optimal algorithm for
solving this task is the LANL-developed “Screening method”

Vuffray, Misra, Lokhov, Chertkov, NIPS (2016)
Lokhov, Vuffray, Misra, Chertkov, submitted to Nature Physics (2016)



How does Screening method work?

For each spin, minimize the
potential Si (Ji ,Hi ) which applies
counter-interactions (P ∝ e−H):

(Ĵi , Ĥi ) = argmin
(Ji ,Hi )

(
Si (Ji ,Hi ) + λ‖Ji‖1

)
Si (Ji ,Hi ) = 〈exp(

∑
j 6=i

Jijσiσj + Hiσi )〉M

Vuffray, Misra, Lokhov, Chertkov, NIPS (2016)
Lokhov, Vuffray, Misra, Chertkov, submitted to
Nature Physics (2016)

〈Si(Ji,Hi)〉 

〈Si(Ji*,Hi*)〉

〈Si(Ji=0,Hi=0)〉=1

Ji

Hi i

i

i

First outcome of this project: development of an efficient
algorithmic implementation using advanced first-order optimization
methods (∼ N2 times faster, to appear on GitHub)



Effective temperature
Where does the effective temperature come from? Let us look at the
annealing procedure with τ = t/tannealing:

H(τ) = A(τ)

(
−
∑
i∈V

σx
i

)
+ B(τ)

∑
〈i,j〉

Jijσ
z
i σ

z
j +

∑
i∈V

Hiσ
z
i


Monotonic functions A and B satisfy A(0)� B(0) and A(1)� B(1).

The “freeze-out” phenomenon: the
evolution stops at the point τfreeze:

Teff = TD-wave
B(1)

B(τfreeze)

Benedetti et al., Phys. Rev. A (2016)
Raymond et al., “Global warming: temperature
estimation in annealers” (2016)

! No unique Teff: β is the function of the input Hamiltonian

! “Single qubit freeze-out”: τfreeze can vary for different spins
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Teff = TD-wave
B(1)
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Benedetti et al., Phys. Rev. A (2016)
Raymond et al., “Global warming: temperature
estimation in annealers” (2016)

B(τ), B(1)=9.40 GHz
A(τ)

τ τfreeze

B(τfreeze)

! No unique Teff: β is the function of the input Hamiltonian

! “Single qubit freeze-out”: τfreeze can vary for different spins



Illustration: estimating the effective temperature
Data set (from Marcus Daniels): embedded closed circles of N = 22
spins with different values of Ji,i+1 and Hi = 0 (diverse realizations,
tannealing, etc.). Example for M = 7250 and Ji,i+1 = −0.0625 ∀(i , i + 1).
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Refined {J ′ij ,H ′i }. Neglecting H ′i and biases, βeff ≈ 7 since J ′ = −0.44.
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Illustration: estimating the effective temperature

Example for M = 7250 and Ji,i+1 = −0.4375 ∀(i , i + 1).
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Refined {J ′ij ,H ′i }. Neglecting H ′i and biases, βeff ≈ 4.2 since J ′ = −1.84.
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Illustration: estimating the effective temperature

Example for M = 7250 and Ji,i+1 = −0.75 ∀(i , i + 1).
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Refined {J ′ij ,H ′i }. Neglecting H ′i and biases, βeff ≈ 3.72 since J ′ = −2.79.
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Illustration: estimating the effective temperature
In the case of Ji,i+1 = −1.0 ∀(i , i + 1), M = 7250 is insufficient: the
topology can not be correctly recovered.
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What about biases?

Simple test: if P(σ) ∝ e−H(σ)/(αT ), then α2T ∂
∂α〈H〉 = 〈H2〉− 〈H〉2
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Checkerboard pattern with magnetic fields

Finite sample-size error
amplified by α2 
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Example found by Carleton Coffrin, see next talk!



Illustration: detecting and correcting biases

Example of the input H = 0 over the entire Chimera graph
Although D-wave comes with a software for correcting biases, they are
still present and persist. Example from the Burnaby machine on Sep 15:
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Illustration: detecting and correcting biases
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Illustration: detecting and correcting biases
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Illustration: detecting and correcting biases
Jij=0.025
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Illustration: detecting and correcting biases

Corrections: inputting H = − 1
βJ

∑
〈i ,j〉

J(bias)
ij σiσj − 1

βH

∑
i∈V

H(bias)
i σi
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Symmetrized and more squeezed distributions with a single iteration



Path forward: efficient calibration of the D-wave machine
The calibration issue addressed in several recent papers with
heuristic methods: King & McGeoch (2014); Perdomo-Ortiz et al., Sci. Rep. (2016); . . .

As shown in the previous examples, we can do much better!

! Iteratively correcting the biases for the target HT :

i)
HT

β
−→ HT + ∆(HT )

ii)
HT −∆(HT )

β
−→ HT −∆(HT ) + ∆(HT −∆(HT ))

≈ HT −∆′(HT )∆(HT )

iii)
HT −∆(HT ) + ∆′(HT )∆(HT )

β
−→ . . .

! Machine learning task: learn the functional form of ∆(HT )
with the linear response theory; start directly at the point (ii)

! Include the higher-order interaction terms in the
reconstruction problem to capture the effect of inactive spins
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